Embedded smart vision system based on RBF neural processor: application to human pose classification

M. Paindavoine1,2, E. Boattlander2, G. Sauvage2, G. Camenen2, O. Brousse1,2

1: LEAD Universiy of Burgundy & CNRS (Dijon, France)
2: GlobalSensing Technologies (Dijon, France)
I- Introduction:

Human detection from natural scenes with artificial vision systems needs background elimination.

Simple differences between current image and background reference image are too noise sensitive.

Some robust algorithms have been introduced like Gaussian Mixture Model but calculation complexity is high.

An optimization of performance vs complexity consists in bio-inspired human performances in words of detection and recognition.
Simple Tasks with Human Brain vs Von Neuman Computer (like PC):

- Calculate in less than one second \((398387.86 \times 498.07=?)\)

- But recognize in less than one second this image:

![Image of the Eiffel Tower](image.png)

Artificial vision model proposal for embedded systems:

- Arithmetic calculations used in image filtering for example:
 --\> Von Neuman (or Harvard) architectures

- Object recognition from natural images:
 --\> Bio-inspired Human intelligence: Artificial Intelligence on Silicon
Outline

Introduction

Artificial Intelligence on Silicon

SmartNeurocam: Embedded smart vision system

Application: Real time human pose classification

Conclusion
II- Artificial Intelligence on Silicon:

CogniMem (from General Vision): RBF & KNN models

- Feature #1: neurons arranged in parallel
 - Daisy-chain In
 - Digital video signal
- Feature #2: Recognition logic
 - Digital Signature
- Feature #3: Sub-sampling within a region
 - Command interpreter
 - parallel and I2C buses
 - Daisy-chain Out (to add more neurons)

n1, n2, n3, n1024
CogniMem: Detailed Block Diagram

- 256 bytes FIFO
- Recognition state machine
- 16 neurons
- Command & Control logic
- 16 neurons
- Video signature logic
- 16 neurons
- Bypass
- 16 neurons
- 64 clusters (1024 neurons)
- Internal bus
- Buffers
- Digital input bus
- I2C BUS
- Parallel bus
- Daisy Chain in
- Daisy Chain out
- CAT_VAL
- DIST_VAL
- 06/24/13 ISCA_BIC Tel-Aviv 2013
A network of neurons in parallel

Internal neuron architecture

Distance

Influence Field

Prototype

Category

Context

All neurons process the input vector in parallel

Best match of all neurons, 36 clock cycles later
An adaptive model generator

- Learn by examples (supervised or unsupervised)
- Map decision spaces by aggregate instead of hyper planes
- Cope with non-linear, convex, disjoints and embedded categories
- Multiple space generation using different contexts
- Save and restore the contents of the neurons
- Can append more training at any time

Learning = Building a "decision spaces" by learning examples
A high-performance classifier

- Global response readout:
 - positively identified
 - identified with uncertainty
 - unknown
- Detailed response of all the firing neurons
 - category and confidence level (or distance)
 - retrieved per decreasing confidence

Recognition = where does the sample fall in the decision space?
High speed performance

- Constant recognition time independent from the number of neurons in use
 - 9.47 usec to broadcast a pattern of 256 bytes to all neurons (@ 27Mhz)
 - 1.3 usec to read to the best match
Comparison with other architectures

Benchmark: 256-bytes vector at the input of the NN

<table>
<thead>
<tr>
<th>PC pentium</th>
<th>DSP Shark</th>
<th>DSP Tiger</th>
<th>Neural Processor</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 GHz</td>
<td>100 MHz</td>
<td>300 MHz</td>
<td>27 MHZ</td>
</tr>
<tr>
<td>T=1714 µs</td>
<td>T=7925 µs</td>
<td>T=949 µs</td>
<td>T=10 µs</td>
</tr>
</tbody>
</table>

- 170 times faster than a computer running at 2.4 Ghz
- Capable of **100,000 recognition of a 256-bytes vector/sec**
- 120 times less power than a Pentium (**0.5w vs 60w**)
III-Embedded smart vision system (1/2):

SmartNeuroCam

NeuroFPGA board
Embedded smart vision system (2/2):

CogniMem

NeuroFPGA

FPGA

55 mm

55 mm

Camera Head

Aptina CMOS

Image sensor:
752 x 480 pixels @ 60fps

SmartNeuroCam
IV- Application: Real time human pose classification

1) Learning:
- Sequence acquisition with different poses
- Background elimination → pre-processed image
- Region Of Interest (ROI) off line learning

2) Real time recognition:
- Current image acquisition
- Background elimination using FPGA
- ROIs scanning (from pre-processed image)
- ROI classification using CogniMem neural processor
Background Elimination

Based on image differences

Original Image

Pre-Processed Image
ROI off line learning

- Standing Pose
- Crouching Pose
- Lying Pose
Real time classification: ROI scanning

ROI classification obtained with CogniMem
Real Time Image scales analysis < 40ms

Scale 1: Small pattern sizes
ROI = 80x200 with step 8

→ 2500 ROI to analyze
→ 2500x10microsec = 25ms

Scale 2: Medium pattern sizes
ROI = 125x300 with step 8

→ 1000 ROI to analyze
→ 1000x10microsec = 10ms

Scale 3: Large pattern sizes
ROI = 240x400 with step 8

→ 250 ROI to analyze
→ 250x10microsec = 2.5ms
Results overlayed on the original color images
V- Conclusion and Perspectives

Validation of a real time human pose classification using an embedded smart vision system.

Demonstration of the interest of using Artificial Neural Network for human pose classification (95% of good classification).

Demonstration of the interest of using Neural Processor in words of low-power consumption and speed.

Under study:

- To obtain more robust features, implementation of efficient low-level image pre-processing (like Gabor filter, wavelets, …..) \(\rightarrow \) **Hmax model**
- Implementation inside the same FPGA image pre-processing and classifier based on RBF
Hmax Model Implementation onto FPGA ARTIX-7

Serre et al, IEEE PAMI 2007